Honors Precalculus Yearlong Mathematics Map								
Resources: A	pproved f	rom Board of Educat	ion	Assessments: Dist	rict Benchmark Assessments			
		Common Core State	Standards – Standards for Mathematical Practice:					
	1. Make sense of problems and persevere in solving them.				ly and quantitatively.			
		3. Construct viable arg	uments and critique the reasoning of others.	4. Model with mat	hematics.			
		5. Use appropriate too	Is strategically.	6. Attend to precis	sion.			
		7. Look for and make u	ise of structure.	8. Look for and exp	press regularity in repeated reasoning.			
Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary		
N	CN	Perform arithmetic operations with complex numbers.	N-CN.3 (+) Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.	Complex numbers - Conjugate	N-CN.3 Find the conjugate of a complex number	moduli, rationalizing the denominator		
N	CN	Perform arithmetic operations with complex numbers.	N-CN.3 (+) Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.	Complex numbers - Conjugate	N-CN.3 Find moduli and quotients of complex numbers using conjugates	moduli		
N	CN	Represent complex numbers and their operations on the complex plane.	N-CN.4 (+) Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.	·	N-CN.4 Represent complex numbers on the complex plane in rectangular and polar form	polar coordinates, rectangular coordinates, lemniscate, limacon, rose, cardioid		
N		Represent complex numbers and their operations on the complex plane.	N-CN.4 (+) Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.	· ·	N-CN.4 Explain why the rectangular and polar forms of a given complex number represent the same number	equivalent forms, unit conversions		
N	CN	Represent complex numbers and their operations on the complex plane.	N-CN.5 (+) Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation. For example, $(-1 + \sqrt{3})$ i) 3 = 8 because $(-1 + \sqrt{3})$ i) has modulus 2 and argument 120°.	Complex numbers - Complex plane	N-CN.5 Utilize properties to add, subtract, multiply, and conjugate complex numbers	Operations with variables		

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
N	CN	Represent complex numbers and their operations on the complex plane.	N-CN.5 (+) Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation. For example, $(-1 + \sqrt{3}) = 8$ because $(-1 + \sqrt{3})$ has modulus 2 and argument 120°.	Complex numbers - Complex plane	N-CN.5 Represent complex computations geometrically on a complex plane (Calculus)	
N	CN	Represent complex numbers and their operations on the complex plane.	N-CN.6 (+) Calculate the distance between numbers in the complex plane as the modulus of the difference, and the midpoint of a segment as the average of the numbers at its endpoints.	Complex numbers - Complex plane	N-CN.6 Calculate the distance between numbers in the complex plane as the modulus of the difference (Calculus)	
N	CN	Represent complex numbers and their operations on the complex plane.	N-CN.6 (+) Calculate the distance between numbers in the complex plane as the modulus of the difference, and the midpoint of a segment as the average of the numbers at its endpoints.	Complex numbers - Complex plane	N-CN.6 Calculate the midpoint of a segment as the average of the numbers at its endpoints (Calculus)	
N	VM		N-VM.1 (+) Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., v , $ v $, $ v $, v).	Vectors	N-VM.1 Represent vector quantities by directed line segments with appropriate symbols for the vectors and their magnitudes	Distance formula, translations, magnitude, vector, component
N	VM	· •	N-VM.2 (+) Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.	Vectors	N-VM.2 Find the components of a vector	vector, component
N	VM	· ·	N-VM.3 (+) Solve problems involving velocity and other quantities that can be represented by vectors.	Vectors	N-VM.3 Solve problems involving velocity and other quantities that can be represented by vectors	vector
N	VM	Perform operations on vectors.	N-VM.4 (+) Add and subtract vectors.	Vectors - Operations	N-VM.4	
N	VM	Perform operations on vectors.	N-VM.4a Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes.	Vectors - Operations	N-VM.4a Add vectors using their components	vector, component

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
N	VM	Perform operations on vectors.	N-VM.4a Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes.	Vectors - Operations	N-VM 4a Add vectors using the parallelogram rule	vector, component
N	VM	Perform operations on vectors.	N-VM.4b Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.	Vectors - Operations	N-VM.4b Determine the magnitude and direction of the sum of two vectors	trigonometric properties of angles, magnitude, vector, component
N	VM	Perform operations on vectors.	N-VM.4c Understand vector subtraction v – w as v + (–w), where –w is the additive inverse of w, with the same magnitude as w and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise.	Vectors - Operations	N-VM.4c Subtract vectors using their components	vector, component
N	VM	Perform operations on vectors.	N-VM.4c Understand vector subtraction v – w as v + (–w), where –w is the additive inverse of w, with the same magnitude as w and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise.	Vectors - Operations	N-VM.4c Subtract vectors graphically	vector
N	VM	Perform operations on vectors.	N-VM.5 (+) Multiply a vector by a scalar.	Vectors - Operations	N-VM.5	
N	VM	Perform operations on vectors.	N-VM.5a Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as c(vx, vy) = (cvx, cvy).	Vectors - Operations	N-VM.5a Multiply a vector and a scalar using the vector components	scalar, vector
N	VM	Perform operations on vectors.	N-VM.5a Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as c(vx, vy) = (cvx, cvy).	Vectors - Operations	N-VM.5a Multiply a vector and a scalar graphically	scalar, vector

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
N	VM	Perform operations on vectors.	N-VM.5b Compute the magnitude of a scalar multiple cv using $ cv = c v$. Compute the direction of cv knowing that when $ c v \ne 0$, the direction of cv is either along v (for c > 0) or against v (for c < 0).	Vectors - Operations	N-VM.5b Compute the direction and magnitude of a scalar multiple	vector, scalar multiple, magnitude
N	VM	Perform operations on matrices and use matrices in applications.	N-VM.6 (+) Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network.	Matrices - Operations	N-VM.6 Represent and manipulate data using matrices	matrix
N	VM	Perform operations on matrices and use matrices in applications.	N-VM.7 (+) Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled.	Matrices - Operations	N-VM.7 Multiply matrices by scalars to produce new matrices	distribution, scalar, matrix
N	VM	Perform operations on matrices and use matrices in applications.	N-VM.8 (+) Add, subtract, and multiply matrices of appropriate dimensions.	Matrices - Operations	N-VM.8 Add, subtract, and multiply matrices of appropriate dimensions	dimensions, matrix
N	VM	Perform operations on matrices and use matrices in applications.	N-VM.9 (+) Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties.	Matrices - Operations	N-VM.9 Prove commutative, associative, and distributive properties of matrices	commutative, associative, distributive properties from algebra, matrices
N	VM	Perform operations on matrices and use matrices in applications.	N-VM.10 (+) Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse.	Matrices - Operations	N-VM.10 Explain the role of zero and identity matrices in matrix addition and multiplication	matrices, square matrices

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
N	VM	Perform operations on matrices and use matrices in applications.	N-VM.10 (+) Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse.	Matrices - Operations	N-VM.10 Find the determinant of a square matrix	determinant, matrix
N	VM	Perform operations on matrices and use matrices in applications.	N-VM.11 (+) Multiply a vector (regarded as a matrix with one column) by a matrix of suitable dimensions to produce another vector. Work with matrices as transformations of vectors.	Matrices - Operations	N-VM.11 Multiply a vector by a matrix of suitable dimensions to produce another vector	vector, dimensions, matrix
N	VM	Perform operations on matrices and use matrices in applications.	N-VM.11 (+) Multiply a vector (regarded as a matrix with one column) by a matrix of suitable dimensions to produce another vector. Work with matrices as transformations of vectors.	Matrices - Operations	N-VM.11 Transform vectors using matrices	transform, vector, matrix, distribution
N	VM	Perform operations on matrices and use matrices in applications.	N-VM.12 (+) Work with 2 \times 2 matrices as a transformations of the plane, and interpret the absolute value of the determinant in terms of area.	Matrices - Operations	N-VM.12 Transform 2x2 matrices (Calculus)	transform, matrix, square matrices
N	VM	Perform operations on matrices and use matrices in applications.	N-VM.12 (+) Work with 2×2 matrices as a transformations of the plane, and interpret the absolute value of the determinant in terms of area.	Matrices - Operations	N-VM.12 Interpret the absolute value of the determinant in terms of area (Calculus)	determinant, matrix
A	REI	Solve systems of equations.	A-REI.8 (+) Represent a system of linear equations as a single matrix equation in a vector variable.	Matrices - Solving Systems of equations	A-REI.8 Represent a system of linear equations as a single matrix equation in a vector variable	matrix, vector
A	REI	Solve systems of equations.	A-REI.9 (+) Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3×3 or greater).	Matrices - Solving Systems of equations	A-REI.9 Solve systems of linear equations using the inverse of a matrix	matrices, invertible

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
F	IF	Analyze functions using different representations.	F-IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. *		F-IF.7	
F	IF	Analyze functions using different representations.	F-IF.7d (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.	Functions - Analysis	F-IF.7d Identify zeros through graphing rational functions	x-intercepts, interval notation, oblique asymptote, average rate of change
F	IF	Analyze functions using different representations.	F-IF.7d (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.	Functions - Analysis	F-IF.7d Identify asymptotes through graphing rational functions	dividing by zero, interval notation, oblique asymptote, average rate of change
F	IF	Analyze functions using different representations.	F-IF.7d (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.	Functions - Analysis	F-IF.7d Recognize end behavior through graphing rational functions	even and odd degree, interval notation, oblique asymptote, average rate of change
F	BF	Build a function that models a relationship between two quantities.	F-BF.1c (+) Compose functions. For example, if T(y) is the temperature in the atmosphere as a function of height, and h(t) is the height of a weather balloon as a function of time, then T(h(t)) is the temperature at the location of the weather balloon as a function of time.	Functions - Composition	F-BF.1c Compose functions	Substitution
F	BF	Build new functions from existing functions.	F-BF.4 Find inverse functions.	Building functions - Inverses	F-BF.4	
F	BF	Build new functions from existing functions.	F-BF.4b (+) Verify by composition that one function is the inverse of another.	Building functions - Inverses	F-BF.4b Verify functions are inverses through composition	one to one

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
F	BF	Build new functions		Building functions -	F-BF.4c Calculate the coordinates of an inverse	one to one
		from existing	graph or a table, given that the function has an inverse.	Inverses	function from a graph or table	
		functions.				
F	BF	Build new functions	F-BF.4d (+) Produce an invertible function from a non-	Building functions -	F-BF.4d Produce an invertible function from a	invertible, one to one
		from existing	invertible function by restricting the domain.	Inverses	non-invertible function by restricting the domain	
		functions.				
F	BF	Build new functions	F-BF.5 (+) Understand the inverse relationship	Building functions -	F-BF.5 Compare the characteristics of exponents	
		from existing	between exponents and logarithms and use this	Inverses	and logarithms	
		functions.	relationship to solve problems involving logarithms			
			and exponents.			
F	BF	Build new functions	F-BF.5 (+) Understand the inverse relationship	Building functions -	F-BF.5 Solve problems involving logarithms and	logistic
		from existing	between exponents and logarithms and use this	Inverses	exponents	
		functions.	relationship to solve problems involving logarithms			
			and exponents.			
F	TF	Extend the domain of	F-TF.3 (+) Use special triangles to determine	Trigonometric	F-TF.3 Geometrically determine the values of	30-60-90, 45-45-90
		trigonometric	geometrically the values of sine, cosine, tangent for	Functions - Special	sine, cosine, and tangent for $\pi/3$, $\pi/4$ and $\pi/6$	triangles, cosecant,
		functions using the	$\pi/3$, $\pi/4$ and $\pi/6$, and use the unit circle to express the	Triangles	using special triangles	secant, cotangent
		unit circle.	values of sine, cosines, and tangent for x, π + x, and 2π			
			– x in terms of their values for x, where x is any real			
			number.			
F	TF	Extend the domain of	F-TF.3 (+) Use special triangles to determine	Trigonometric	F-TF.3 Express the values of sine, cosine, and	cosecant, secant,
		trigonometric	geometrically the values of sine, cosine, tangent for	Functions - Unit	tangent for x, π + x, and 2π – x using the unit	cotangent, midline,
		functions using the	$\pi/3$, $\pi/4$ and $\pi/6$, and use the unit circle to express the	Circle	circle	phase shift
		unit circle.	values of sine, cosines, and tangent for x, π + x, and 2π			
			– x in terms of their values for x, where x is any real			
			number.			
F	TF	Extend the domain of	F-TF.4 (+) Use the unit circle to explain symmetry (odd	Trigonometric	F-TF.4 Explain even/odd symmetry and	fold along y axis,
		trigonometric	and even) and periodicity of trigonometric functions.	Functions - Unit	periodicity of trigonometric functions using the	rotate 180 degrees,
		functions using the		Circle	unit circle	even symmetry, odd
		unit circle.				symmetry

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
F	TF	Model periodic	F-TF.6 (+) Understand that restricting a trigonometric	Trigonometric	F-TF.6 Construct the inverse of a trigonometric	one to one
		phenomena with	function to a domain on which it is always increasing or	Functions - Inverse	function through restricting the domain	
		trigonometric	always decreasing allows its inverse to be constructed.			
	TF	functions.	F-TF.7 (+) Use inverse functions to solve trigonometric	Trigonomotrio	F TF 7 Model triggenemetric equation ward	Calving inverse
Г	IF	Model periodic phenomena with	1	Trigonometric Functions -	F-TF.7 Model trigonometric equation word	Solving inverse
		'	equations that arise in modeling contexts; evaluate the		problems using inverses and technology	trigonometric
		trigonometric	solutions using technology, and interpret them in	Modeling		equations, one-to-
		functions.	terms of the context.★			one, linear speed, angular speed
 F	TF	Prove and apply	F-TF.9 (+) Prove the addition and subtraction formulas	Trigonometric	F-TF.9 Prove the addition and subtraction	Substitution
		trigonometric	for sine, cosine, and tangent and use them to solve	Functions - Proving	formulas for sine, cosine, and tangent	
		identities.	problems.	Identities		
F	TF	Prove and apply	F-TF.9 (+) Prove the addition and subtraction formulas	Trigonometric	F-TF.9 Solve trigonometric problems using the	
		trigonometric	for sine, cosine, and tangent and use them to solve	Functions - Solving	addition and subtraction formulas for sine, cosine,	
		identities.	problems.	equations	and tangent	
G	SRT	Apply trigonometry to	G-SRT.9 (+) Derive the formula a = 1/2 absinc for the	Trigonometric	G-SRT.9 Derive the formula a = 1/2 absinc for the	law of sines, law of
		general triangles	area of a triangle by drawing an auxillary line from a	Functions -	area of a triangle by drawing an auxillary line from	cosines, Heron's
			vertex perpendicular to the opposite side.	Similarity, right	a vertex perpendicular to the opposite side.	formula
				triangles, and		
				trigonometry		
G	SRT	Apply trigonometry to	G-SRT.10 (+) Prove the law of cosines and sines and	Trigonometric	G-SRT.10 Prove the law of cosines and sines and	law of sines, law of
		general triangles	use them to solve problems.	Functions -	use them to solve problems.	cosines
				Similarity, right		
				triangles, and		
				trigonometry		
G	SRT	Apply trigonometry to	G-SRT.11 (+) Understand and apply the law of sines	Trigonometric	G-SRT.11 Understand and apply the law of sines	law of sines, law of
		general triangles	and law of cosines to find unknown measurements in	Functions -	and law of cosines to find unknown	cosines
			right and non-right triangles. (e.g. Surveying problems,	Similarity, right	measurements in right and non-right triangles.	
			resultant forces)	triangles, and	(e.g. Surveying problems, resultant forces)	
				trigonometry		

Conceptual Category	Domain	Cluster	Common Core Standard	Content	Skills	Academic Vocabulary
G	GPE	geometric description	G-GPE.3 (+) Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.	Conic Sections - Forming Equations	G-GPE.3 Derive the equations of ellipses given the foci, using the fact that the sum or difference of distances from the foci is constant	circles, Pythagorean theorem
G		geometric description	G-GPE.3 (+) Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.	Conic Sections - Forming Equations	G-GPE.3 Derive the equations of hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant	conic section, covertices, directrix, ellipse, focus, hyperbola, major axis, minor axis